

- ブレットボードの配線を変えます
 - スピーカーの配線

 12番(黄色) -線(緑色)
 ボリウムを取り付ける
 28番g(赤色側) 30番g(黒色側)
 - 29 番 e
 - ③ 赤・黒色ジャンパー線
 28番(赤色) 30番(黒色)
 17番赤色 16番から移動)
 3本ピン端子を付ける

Arduino マイコン入門 第4回 -1/10 -

Arduino で音を出す

スピーカーの黄色線を Arduino uno 5番ピンに接続 緑色の線は マイナス線 または 13番ピン横の グランドピンにつなぐ

Arduino マイコン入門 第4回 -2/10 -

音を出すスケッチ【tonel.ino】

void setup()

pinMode(5, OUTPUT); // D5 にスピーカーつなぐ。

int sounds[] = {200,300,400,600,800,1200.1600.2400}; int v = 0;

void loop()

tone(12,sounds[v],10); delay(50);

v ++; $if(v > 7){$

v =0; }

3

音を出すスケッチ【tone2. ino】

ONPU 600//四分音符 #define #define ONPU2 800//二分音符

ONPU3 100 //三連符 #define #define SPEAKER 5 //スピーカーの出力ピン番号 5

void setup() { }

void loop() {

// tone (出力ピン番号,周波数(Hz),音の長さ(ミリセカンド))

tone(SPEAKER.523,ONPU3);// ド

delay(200);

tone(SPEAKER, <mark>523,</mark> ONPU3) ; // ド	単位:ヘルツ	
delay(200);	ド 262 (523) 261.0	
tone(SPEAKER, <mark>523</mark> ,ONPU3); // ド	$\vee 294(587)$ 293	
delay(200);	200(650)	
tone(SPEAKER, <mark>523</mark> ,ONPU2);// ド	2 330 (659)	
delay(600) ;	77 350 (698)	
tone(SPEAKER, <mark>415</mark> ,ONPU) ; // ラ b	ン 392(784)	
delay(600) ;		
tone(SPEAKER, <mark>466</mark> ,ONPU) ; // シb	2 440 (000)	
delay(600) ;	シ 494 (987)	
tone(SPEAKER, <mark>523</mark> ,ONPU3);// ド	ド 523 (10475)	
delay(200); // 8 分休符として付与		
delay(200);	正確な値は調べてくださ	
tone(SPEAKER, <mark>466</mark> ,ONPU) ; // シb		
delay(200);		
tone(SPEAKER, <mark>523</mark> ,ONPU2) ; // ド		

音階と周波数の関係

261.626 293.665

ださい

Arduing UNO で サーボモーターを動かす

「ラピロ」というロボットです

首に1つ、腰に1つ、 両足に2つずつ、両腕に3つずつ、 計 12 個のサーボモータがついています。

それぞれが正しく動いて 向きを変えたり手をあげたりできるのです。

Arduino マイコン入門 第4回 -4/10 -

サーボモーターを ArduinoUNO につなぐ

可変抵抗で サーボモーターを動かす

<mark>スケッチ【_2018servo1】</mark> を使ってサーボを動かしてみましょう

1	#include <servo.h></servo.h>
2	Servo myservo;
3	int val;
4	
5	void setup()
6	{
7	myservo.attach(12); //デジタル 12番ピンをサーボの角度命令出力ピンとして
	設定
8	}
9	
10	void loop()
11	{
12	val = 0;
13	myservo.write(val); //サーボを動かす(0度)
14	delay(1000);
15	val = 90;
16	myservo.write(val); //サーボを動かす(90度)
17	delay(1000);
18	val = 180;
19	myservo.write(val); //サーボを動かす(180度)
20	delay(1000);
21	val = 90;
22	myservo.write(val); //サーボを動かす(90度)
23	delay(1000);
24	}

	<mark>スケッチ『_2018servomotor_VOL2』</mark>			
	みず色の部品(4.7kOの半固定ボリウル)			
	ノフストライハーで回りとサーホの角度が変わります			
1	Hardede Comerts			
1 2	#include <servo.n></servo.n>			
3	#define SERVOPIN (12)			
4	#define VOLUMEPIN (0)			
5				
6 7	Servo g_servo,			
8	void setup()			
9				
10	g_servo.attach(SERVOPIN);			
11	}			
12	int Man(int iIn int iIn1 int iIn2 int iOut1 int iOut2 hoolean hConstrain = false)			
14				
15	double dValue = (double)(iIn - iIn1) * (iOut2 - iOut1) / (iIn2 - iIn1) + iOut1;			
16	int iValue = $(0 < dValue)$? (int)($dValue + 0.5$) : (int)($dValue - 0.5$);			
17	if (bConstrain)			
10	int iOutMin_iOutMax:			
20	if(iOut1 < iOut2)			
21	{			
22	iOutMin= iOut1;			
23	iOutMax= iOut2;			
24 25				
26				
27	iOutMin= iOut2;			
28	iOutMax= iOut1;			
29	} :((:OutMin & :W-lost)			
30	() () () () () () () () () ()			
32	return iOutMin;			
33	}			
34	if(iOutMax < iValue)			
35	{			
37	}			
38	}			
39	return iValue;			
40	}			
41 42	void loon()			
43				
44	int iValue = analogRead(VOLUMEPIN);			
45	int iAngle = Map(iValue, 0, 1023, 0, 180, true);			
46	g_servo.write(iAngle);			
47	delay(15);			
40	3			

Arduino マイコン入門 第4回 -7/10 -

超音波レーダー

	スケッチ【_2018Ultrasonic_radar】
	ブレッドボードの結線を確かめてください
	これまでの結線のままでは、うまく動きません
	超音波センサーのトリガー 8番端子(橙色の線)
	超音波センサーの受信信号 9番端子(黄色の線)
	サーボモーターの制御信号 12番端子(緑色の線)
	音 (スピーカー) 6番端子
	LED(赤・黄・青 何色でも良い) 5番端子
※こ	こからスケッチ スタート
1	<pre>#include <servo. h=""></servo.></pre>
2	#define pinLED 5 //距離設定した LED の点灯表示
3	#define PINNO 6 // スピーカを接続したピン番号
4	#define trigPin 8 //距離センサーのトリガ信号
5	#define echoPin 9 //距離センサーのエコー信号
6	#define BEAT 300 // スピーカーから出る音の長さを指定
7	Servo myservo; // create servo object to control a servo
3	int pos = 0; // サーボモーターの位置(角度)を表す数値
9	int duration, distance; //エコー信号から計算した距離数値
10	int old_distance = 10; //設定距離 8 cm
11	
12	void setup()
13	{
14	myservo. attach(12); //サーボモーター制御ピン番号
15	Serial.begin(9600); //シリアル信号スピード
16	pinMode(trigPin, OUTPUT);
17	pinMode (echoPin, INPUT);
18	pinMode(pinLED, OUTPUT);
19	}
20	void loop()
21	tor (pos = 0; pos <= 180; pos += 1) //位置 0 から 180 になるまでステップ 1 で
22	{

Arduino マイコン入門 第4回 -8/10 -

23	digitalWrite(pinLED, LOW);
24	myservo.write(pos);
25	Eloop();
26	while (distance <= old_distance) {
27	Eloop();
28	digitalWrite(pinLED, HIGH);
29	tone(PINNO, 392, BEAT + BEAT) ; // \checkmark
30	// delay(BEAT) ;
31	// tone(PINNO, 440, BEAT) ; // $\bar{\nearrow}$
32	// delay(BEAT) ;
33	// tone(PINNO, 494, BEAT + BEAT) ; // \gg
34	// $delay(BEAT + BEAT);$
35	//delay(20);
36	}
37	}
38	for (pos = 180; pos >= 0; pos -= 1) //位置 180 から 0 になるまでス
00	テップ1で
39	
40	digitalWrite(pinLED, LOW),
41	myservo.write(pos), // サーホの位直を 'pos'に入れ ておく
42	Eloop();
43	while (distance <= old_distance) {
44	Eloop();
45	digitalWrite(pinLED, HIGH);
46	tone(PINNO, 494, BEAT + BEAT); $\parallel \geq$
47	// delay(BEAT + BEAT) ;
48	// tone(PINNO, 440, BEAT) ; // ラ
49	// delay(BEAT) ;
50	// digitalWrite(pinLED, HIGH);
51	// tone(PINNO, 392, BEAT + BEAT); // \checkmark
52	//delav(BEAT);
53	// d-l(20);
	// delay(20),
	// delay(20),

55	}
56	}
57	void Eloop() {
58	digitalWrite(trigPin, HIGH);
59	delayMicroseconds(1000);
60	digitalWrite(trigPin, LOW);
61	duration = pulseIn(echoPin, HIGH);
62	distance = (duration / 2) / 29;//音速から距離を計算する式
	// Serial.print(pos);//シリアルモニターに POS と表示 以下半角(英数字しか受け付けない)
63	// Serial.print(" deg "); //角度を表示
64	// Serial.print(distance); //distance と表示
65	// Serial.println(" cm"); //距離を表示
66	delay(2);
67	}
	「//」を消すと 出る音が増えます

次回は第5回(8月4日) 「超音波距離計シールド」を完成させます、「ArduinoNano」の使い方を実習します。

<mark>※ ArduinoNANO にピンを付けてきます。一時預かり()</mark>

Arduino マイコン入門 第4回 -10/10 -

Arduino マイコン入門 第4回 -9/10 -