

「ゆめたまご科学講座」は 11 年 目になります。これまでの受講者 は260人になります。

参加された皆さんに尋ねたところ、自立歩行やサッカーゲームもできる本格的な「ロボット」に興味があるようです。

でもロボット製作にいきなり挑戦 するのは乱暴?です。

Arduino 超音波距離計

この講座ではロボット作りで大切 なマイコンやセンサーを使ったデジ

タル回路や、プログラミングの<u>基礎を学んでいこう</u>と思います。

Arduino UNOというAVRマイコンや超音波距離センサーを使って 「Arduino 超音波距離計」を製作します。

作ることはできても、原理がわからないのでは、応用ができません。 基板作り、ハンダ付け、配線など電気工作の基本的技術も身につけていきまし ょう。超音波を使って、**障害物や壁を避けながら動くロボットをつくることにつ ながります。**夏休みの課題としても使えますね、がんばりましょう。 保護者の方も一緒に体験してください。写真も撮影OKです。

活動日と時間				
第1回	5月26日			
第2回	6月16日	(±)	13:30~15:00 延長することもあ ります	研修室 または 実験室(2 階)
第3回	6月30日			
第4回	7月14日			
第5回	8月4日			
第6回	8月25日			

※都合で欠席する場合は、相談のうえ、補講の期日・時間を決めます。

2018 Arduino マイコン入門 第1回 – 1 –

「Arduinoマイコン」学習で使う部品など

1*	Arduino UNO		マイコン①	
2*	Arduino NANO		マイコン②	
3	ブレッドボード		実験用ボード	
4*	SG90 サーボモーター			
5*	超音波距離センサー			
6	プラボックス			
7	トランジスタ 3		後日配布	
8	乾電池 単3 4本			
9	基板転写フィルム		後日配布	
10*	LED 4 色 各 2 赤 LED 1			
11*	赤外線障害物センサー			
12*	配線コード		ジャンパー線	
13*	電池 BOX (単3、4本			
14	7セグメント LED		3桁赤色数字の表示	
15	8p 端子		後日配布	
16	ピン端子		後日配布	
17*	ミニスピーカー		後日配布	
18*	USB ケーブル(uno 用)			
19*	USB ケーブル(NANO 用)		後日配布	
20	小物入れ			
21	その他	プリント基板 抵抗 <i>コンデン</i> サー ダイオード	超音波距離計の製作に使う	
22	配布ソフト	CH341_Driver arduinoIDE-1.8.5- 第1回テキスト (.pdf)	Arduino uno とパソコンをつなぐ ArduinoIDE 配布したテキスト	

部品や材料は小さかったり、壊れやすいものばかりです。 作業机の上は整頓しておきましょう。 また、 ArduinoUNO は電子回路のかたまりで、高価なものです。 使い方をまちがえたり、電池を+一反対につけたりすると壊れてしま います。 気を付けてください。

Arduino 213

マイコンチップの動作電圧は 5V max 5.6V です USB コードでつないだパソコンや乾電池などから取る ことができます。プラス/マイナスを間違えないようにしましょう。 データービンについて (UNO / NANO)

DOからD13までのデジタル入出力 14本 / 14本

AOからA5までのアナログ入出力 6本 / 8本

データ入出力の切り替えはスケッチで指定します。

※アナログ端子でもデジタル信号を扱うことができます。

<mark>パソコンの設定</mark>

- ①Arduino uno とパソコンをつなぐソフトをインストール [CH341_Driver]
- (2) プログラムを作ったり修正するためのソフトをインストール
 <u>[ArduinolDE-1.8.5]</u>
 - ※ これまでこの講座で多くのパソコンにインストールし、 動作に支障のないことを確認されていますが、 パソコンが不安定になった場合、連絡してください。【 090-7869-3680 】

② ブレッドボードを使って ボードの LED を使う

Lチカ のスケッチ(プログラム) int led =13; void setup() { pinMode(led,OUTPUT); } void loop() { digitalWrite(led, HIGH); delay(1000); digitalWrite(led, LOW); delay(1000); } Arduino IDE の基本的な画面 💿 Blink | Arduino 1.0.1 🖸 コンパイル -verify ファイル 編集 スケッチ ツール ヘルプ コードをコンパイルします。 ø エラーがある場合は、エラー箇所 Blinks が下部の黒枠に表示されます。 COM ポートの確認 1 led = 13: 💽 アップロード-upload) ()quine bio コンパイルしたスケッチを Arduino本体にアップロード ここにスケッチ(プログラム)を書く (書き込み)します。 アップロードが完了したら Arduino本体にスケッチが走り、 () () qual bin digitalWrite(led, HIGH); // turn the LED on (HIGH is the 動きます。 delay(1000); disitalWrite(led, LOW): // turn the LED off by making the voltage LOW delau(1000). ■新規作成 -new ■開く -open 保存-save

注意

使える文字・記号は <mark>半角英数</mark>です。全角の文字はスケッチには使えません ただし、// 以後のメモは全角文字を使うことができます

家で「Lチカ」の値 {13} {1000} などの値を変えて ArduinoIDE を使えるように 練習してください

2018 Arduino マイコン入門 第1回 - 8 -